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Lecture Plan

o Sampling in Generative Models (esp. HW 05)
o Transformer Architecture Continued
 Encoder Review
« Decoder Architecture
« Transfer Learning

« BERT and friends....



Some Strategies for Sampling in Generative Models

In Generative Models, “Sampling” refers to the the choice of the next token using
the probability distribution output by the network.

Let’s look at a really simple example:

Suppose the generative model is creating sentences from the vocabulary
V=] '<s>, '</s>, 'NLP’, 'early’, 'fun’, 'green’, 'hard’, 'interesting’, ‘is’ ]
We have generated three tokens so far:

[ '<s>', 'NLP’, fis’ ]

Token Probability
and the softmax output (probability <es 0.0
distribution) for the next token is: </s> 0:01
NLP 0.03
early 0.12
fun 0.12
green 0.9
hard 0.2
interesting 0.51
is 0.01



Some Strategies for Sampling in Generative Models

There are five common strategies for sampling.

[ '<s>', 'NLP’, fis’, 7?77 ]

1. Sampling using the unmodified distribution:

1 print('\nsample:

<s5> 0.0
</s> 0.01
NLP 0.083
early 0.12
fun 0.12
green 0.0
hard 0.2
interesting 0.51
is 0.01
sample: fun

',sample_choice(outcomes,distribution,option=0))

from numpy.random import choice

choice(a=outcomes,p=distribution)

Code for

sample choice (..)
is on web site.

2. Greedy Sampling: Just choose the single most probable:

1 print('\nsample:

<5>
</s5>
NLP
early
fun
green
hard

interesting

is

sample:

(=
[

eoroceeee e
S0 ®

interesting

' ,sample_choice(outcomes,distribution,option=1))



Some Refinements for Sampling in Generative Models

3. Softmax with Temperature [ '<s>’, 'NLP’, ‘is’, 7227 ]

1 print('\nsample: ',sample_choice(outcomes,distribution,option=2,temperature = 0.01))

<5> 7.09547416228445%9e-23
</s> 1.928749847963851e-22
NLP 1.4251640827408859%e-21
early 1.1548224173015387e-17
fun 1.1548224173015387e-17
green 7.895474162284459%e-23
hard 3.4424771084698575e-14 H : H
interesting ©.9999999999999655 Tem erature w
is 1.928749847963851e-22
Cold: Exaggerate 0 One Hot
sample: interesting differences
1 print('\nsample: ',sample_choice(outcomes,distribution,option=2,temperature = 0.1))
<s> 0.005446284988308871 1.0 Usual Softmax
</s5> 0.0060190757806309345
NLP 0.0073517157600377
early 0.018082302955730302 .. e
fun 0.018082302955730302 Hot: Minimize
green 0.005446284988308871 differences fo'e) Uniform
hard 0.040242905309378116
interesting 0.893310051481244
is 0.0060190757806309345

sample: interesting

1 print('\nsample: ',sample_choice(outcomes,distribution,option=2,temperature = 0.5)) 1 print('\nsample: ',sample_choice(outcomes,distribution,option=2,temperature = 16.0)

<s> 0.088396476946896886

: 0.08396476946896880 <s> 0.10986989484510404
</5> .

NLP 0.08915686084440715 ;{§> 8:%?3?3333323332533
early 0.10674014184435929 early 0.11119627595335972
fun 0.10674014184435929 fun 9.11119627595335972
green 0.08396476946896886 green 0.10986989484510404
hard 0.12526071682556345 hard 0.11208941394957388
interesting 0.23285065904881377 interesting 0.11561860562812123
is 0.08566097032727966 is 0.10997981969321279

sample: </s>

sample: green



Some Refinements for Sampling in Generative Models

4. Top-K Sampling: From top K most probable, choose proportionally:

1 print('\nsample: ',sample_choice(outcomes,distribution, option=

interesting 0.5368421052631579 interesting  0.51
hard 0.2105263157894737 < hard 9.2
fun 0.12631578947368421 . . fun 0.12
early 0.12631578947368421 Normalize to a probability early 0.12
distribution (sum = 1.0) e 0 01
sample: fun /s> 0.01
green 0.0
<5> 0.0

5. Top-P: From top choices with sum of probability p,
choose proportionally:

1 print('\nsample: ',sample_choice(outcomes,distribution,option= Sum
i i 0.51
interesting  0.6144578313253012 ) hueresting 013 071
hard 0.24096385542168675 - fun 0.12 0.83
fun 0.14457831325301204 . . early 0.12 0.95
Normalize to a probability NLP 0.03 098
sample: interesting distribution (sum = 1.0) is 0.01 0.99
</s> 0.01 1.0
green 0.0
<5> 0.0



Some Refinements for Sampling in Generative Models

Code for sample choice(..) ison web site.

1 # Options

7

3 # @ = No modification (default)

4 # 1 = Greedy: return one-hot of maximum prob, equivalent to softmax with @ temperature
5 # 2 = Softmax with temperature (temperature of 1.8 is ordinary softmax)

6 # 3 = Top-K: Choose from top K most probable options (no other modification)

7 # 4 = Nucleus (Top-p): p is a cutoff, choose from the top choices whose cumulative prob just
8 # exceeds p (so in general, cumulative prob is slightly more than p)

9

10

11 import math

12 import numpy as np

13 from numpy.random import choice

14

15 def sample_choice(outcomes,distribution,option=3,temperature=0.3,K=5,p=0.25):

16

17 if type(outcomes) != np.ndarray:

18 outcomes = np.array(outcomes)

19 if type(distribution) != np.ndarray:
2 distribution = np.array(distribution)
22

23 if option == @:

24 return choice(a=outcomes,p=distribution/sum(distribution))

25 elif option == 1:

26 oneHot = np.array([0.08]*len(distribution))

27 oneHot [np.argmax(distribution)] = 1.0

28 return outcomes [np.argmax(distribution)]

29 elif option == 2:

30 sum_exp = sum(math.exp(x/temperature) for x in distribution)

31 lst = [math.exp(x/temperature)/sum_exp for x in distribution]

32 return choice(a=outcomes,p=[math.exp(x/temperature)/sum_exp for x in distribution])
33 elif option == 3:

34 indices = np.argsort(distribution) [-K:]

35 return choice(a=outcomes[indices],p=distribution[indices]/sum(distribution[indices]))
36 elif option == 4:

37 indices = np.argsort(distribution)

38 total = @

39 for C in range(len(distribution)-1,-1,-1):
40 total += distribution[indices[C]]
41 if total > p:
42 break
43 indices = indices[C:]
44 return choice(a=outcomes[indices],p=distribution[indices]/sum(distribution[indices]))

45




Transformer: Multi-Head Attention

The center of the design is the Attention mechanism, here Multi-Head Attention....

Residual Connection

Residual Connection

All the data paths shown
are the width of a word
embedding = 512, and
each path is duplicated
512 times, once for each
word in the input
sequence!
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Input
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Inputs

The input sequence is
512 vectors, each 512
floats wide.
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Transformer: Multi-Head Attention

The basic mechanism at work here is self-attention, where the input is processed to determine
the dependencies between different words.

The_ The_
o . _ =k g
Self-attention is implemented by a series of linear - -
transformations, scaled, and then softmaxed to produce e me. -
the probability distribution which tells us how much each — ™
word depends on other words in the same sequence. i oo-
d_ d_
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Transformer: Multi-Head Attention

Multi-Head Attention applies this self-attention mechanism as 8 (or more)
self-attention Heads:

Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention Self-Attention
C cat C cat Concal Concal
I : ﬁ

Scaled Dm.p,oduc, Scaled Dot Product Scaled Dm Product Scaled Dot Produm Soaled Dot Product Scaled Dot-Product Scaled Dot-Product
Attentior Alter rmc Ater nhc Ater nhc

This allows the encoder to try to understand 8 different kinds of dependencies among
the words in the input.

The_ The_
animal animal_
didn_ didn_
= e The original design applied 8
Cross_ Cross_ .
"y e self-attention heads to
street_ street_ sequences of length 512.
because_| because
it_ it_
was was_
too_ too_ 512
l tire tire
& d. words
——

8 Heads



Transformer: Encoder

Then, this encoder layer is stacked 6, 8, or more layers deep!
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Transformer: Decoder

The Decoder stage has essentially the same features as the Encoder, except for a stage
called Masked Multi-Head Attention.

Apparently, the classic diagram (from the original paper) is a bit misleading, and there
are additional connections between the encoder and decoder:

Output P Softmax
Probabiliies ¢ probabilities for

each word in
vocabulally for
each position
in output.
Feed
Forward |V| *512 (”)
4 Y
~ T o)
FFeedd Muti-Head
orwar Attention
S ey Nx
Nx | —((Add& Norm )
Multi-Head Masked
Attention Multi-Head
A ) Attention
(\\——— y) At
—
Positional
Encoding @-@ & Positional
Encoding
Input Output
Embe'dd'”g Embedding
Inputs Outputs

(shifted right)



Transformer: Decoder

The Decoder stage has essentially the same features as the Encoder, except for

Multi-Headed Attention is masked to simulate left to right generation of output;

Each stage of Decoder takes the context vector (output of encoder) as an additional
input:

INPUT

ENCODER

Encoder 1

Embeddings

DECODER

—p Der schnelle
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LOOK-AHEAD MASK MASKED SCORES
4 N
1 =inf  =inf  ~inf 0.7 =inf ~inf -inf
1 1 -inf  -inf 01 06 ~-inf -inf
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1 1 1 1 0.1 03 03 03
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A Look-Ahead Mask turns Multi-Head Attention into Masked Multi-Head Attention.




Transfer Learning: Leveraging pre-trained models

A hugely important development in ML in the last decade is the development of
transfer learning systems, consisting of two stages:

Pre-Training: A (large) model is trained on a (large) corpus to produce generic
outputs;

Downstream: A NN is added on top of the pre-trained model to build models
for a different task (called a "downstream task").

- - -
Traditional ML VS Transfer Learning
e |solated, single task learning: ’ e Learning of a new tasks relies on
Knowledge is not retained or the previous learned tasks:
accumulated. Learning is performed Learning process can be faster, more
v 1sidering past learned accurate and/or need less training data
knowledge in other tasks
Leaming \ : Leamning
(  Dataset1 | =D System Dataset 1 ) e System
Task 1 : Task 1
nKnowledgeU
Leaming y X 3 Leamning
( Datasetz ¢ System Dataset | [ System

Task2 | \ 2 /) T2 |



Transfer Learning: Leveraging pre-trained models

There are two flavors of transfer learning:

Feature-based: Use outputs of pre-trained
model as "features" input to downstream
model; further training only occurs in
downstream model:

Pre-Train

—)[ Model }—-} prediction
1

features

m }-> prediction

Train a new model

Example: ELMO

Fine-Tuning: Outputs of pre-trained model
are inputs to downstream model, but BOTH
models are trained; typically, changes to
pre-trained model are minimal.

Pre-Train

I Fine-tune same model
on Downstream task

Examples: GPT, BERT



Transfer Learning: Leveraging pre-trained models
This was first used in image processing (but is now used everywhere):

Input data Conv1 Conv2 Conv3 Conv4d Convs FC FC FC

4096 4096
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AlexNet structure of transfer learning from ImageNet database. The parameters are transferred in all layers from
Conv1 to Conv5 except FC.



Transfer Learning for NLP: GPT, ELMO, and BERT

Pre-trained models are typically very large and trained for a long time on huge
amounts of data (so they have a lot of knowledge you can leverage for your
specific task.

The most successful systems in NLP are
« GPT (Generative Pre-trained Transformer)
« ELMO (Embeddings from Language Models)

« BERT (Bidirectional Encoder Representations
from Transformers)

e

These all »( """ :"";;;;'N';r;;.i; ;;; : y
+ Are based on transformers, but use ONLY == =i—
the encoder phase; EE)(E rrrrr s

* Produce contextual embeddings; \i..gééé@é...._ii";‘:ttff‘ff"____é )

« GPT is autoregressive (outputs feed back
into inputs)



Transfer Learning for NLP: GPT, ELMO, and BERT

The most significant difference in the models is how they process the input
sequence:

GPT uses a simplified "causal" transformer model which only uses left-context:

Self-Attention
Lat)t/ert (l l /l' |/| :%',/__:IJ

QTSI CHUME A causal, backward looking, transformer model like Chapter 9. Each output is
computed independently of the others using only information seen earlier in the context.



Transfer Learning for NLP: GPT, ELMO, and BERT

The most significant difference in the models is how they process the input
sequence:

ELMO and BERT use a bidirectional transformer architecture:

Self-Attention
Layer

1373 BIW] Information flow in a bidirectional self-attention model. In processing each
element of the sequence, the model attends to all inputs, both before and after the current one.



BERT

1 - Semi-supervised training on large amounts
of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp
patterns in language. By the end of the training process,

BERT has language-processing abilities capable of empowering
many models we later need to build and train in a supervised way.

Semi-supervised Learning Step
= e

R
[ ™
® ©o
IModel:
O/ BERT
|

I Dataset:

WIKIPEDIA

Die freie Enzyblopadic

Objective:

\

(langauge modeling)

Predict the masked word I

2 - Supervised training on a specific task with a
labeled dataset.

Supervised Learning Step

. 75%  Spam
' ( Classifier }_>
25% | Not Spam
A
IModeI: ® o

(pre-trained

I in step #1) 0/ BERT
|

I Email message Class
Buy these pills Spam
I Dataset: Win cash prizes Spam

Dear Mr. Atreides, please find attached... = Not Spam



BERT

24 ( ENCODER
= Bert has two implementations: oo
= Bert base: |
" 12 layers; 12 attention heads per laye §
cee 3 ENCODER
. . - =
= 768 hidden units; 110 M parameters -
.
(
= Bertlarge: .
" 16 layers; 16 attention heads per laye BERTasse BERTiAReE
" 1024 hidden units; 340 M parameters
System MNLI-(m/mm) QQP  QNLI SST-2 CoLA  STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 823 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1




Training &
BERT ~Q
=

BERT added two significant ideas for training
which allowed it to achieve SOTA performance

on significant tasks:
Training using a Masked Language Model (MLM); and

Focus on a "next sentence prediction” task with two sentences as input.

Note: The first versions of BERT used the 800 M word BooksCorpus and a 2.5 B
word English Wikipedia corpus.



e
Training &
BERT %=
=

The Masked Language Model is based on an educational theory/testing paradigm
known as the Cloze Task, where students learn a language by filling in blanks in a
story or piece of text:

Word vault X
|
Once upon a time there wasan ___ pig with o —
three pigs, and because there was X itte
not enoughto _ them, she sent them X feed
outto __their fortunes. :”
The little pig went off and met a man X swaw
who had a bundle of . He asked the a5
man, "Please give me that to build a :"w
." The man gave him the and
the little pig a house with it. -




Training BERT

Masked Language Modeling uses unannotated text from a large corpus. 15% of
the words in the corpus are selected for the training phase: of these,

80% of replaced with the token [MASK]
10% are replaced with randomly-selected tokens
10% are left unchanged.

if'lh%
] ] CE Loss —]pgmmh
The model is trained to »
, L Vocabulary
predict the missing tokens Wv S

Bidirectional Transformer Encoder j

qi oM qé TIY

Embedd ngs

So [mask] and /// ot fish
long and thanks for the fish




Training BERT

A variation of MLM uses spans (subsequences of the input sequence); all of the
words in the span are replaced as before:

Span-based loss

— 108 Ythanks <‘|‘> 1~ 10g Ythanks
Yiong (@)

S )
Yan FFN @
P4 U

(T-J%.hj

Bidirectional Transformer Encoder

( )
B EREEEREE

So long [mask] [mask] [mask] all the fish
So long and thanks for all the fish

IOTNIVRBRY Span-based language model training. In this example, a span of length 3 is selected for training
and all of the words in the span are masked. The figure illustrates the loss computed for word thanks; the loss
for the entire span is based on the loss for all three of the words in the span.



Training BERT

The Next Sentence Prediction task is to input TWO sentences starting with the
token [CLS] and separated by the token [SEP]. The training set has 50%
sentences that are next to each other in the corpus, and 50% random sentences.

1
CE Loss

o 2
Wnsp £\

t

Bidirectional Transformer Encoder

Token +

s:ggze,;ag.s 838 383 838 304 834 @@é @lé 134 384

[CLS] Cancel my flight [SEP]
An example of the NSP loss calculation.

hotel [SEP]




Using BERT

Bert can be used for sentence classification if a single sentence is input:

YoLs

softmax ( n.rl]ﬂ.n)

We £

Bidirectional Transformer Encoder
Word +
Positional
Embeddings
[CLS] entirely predictable and lacks energy
ISR  Sequence classification with a bidirectional transformer encoder. The output vector for the

[CLS] token serves as input to a simple classifier.



Training BERT

BERT can classify the relationship between two sentences:

e Neutral

a: Jon walked back to the town to the smithy.
b: Jon traveled back to his hometown.

e Contradicts

a: Tourist Information offices can be very helpful.

b: Tourist Information offices are never of any help.

e Entails

a: I'm confused.
b: Not all of it is very clear to me.

1
Celse

-
Wnsp £\

i

Bidirectional Transformer Encoder

Token +

[CLS]

Cancel my

S l@é @lé @lé @lé @@é @lé

flight [SEP]

@

vY

g

the

)
# 359 844

hotel [SEP]

IJTNNCPIN]  An example of the NSP loss calculation.




Training BERT

BERT can generate the most likely sentence to follow a given sentence:

1
s

o
Wnsp £

1

Bidirectional Transformer Encoder

Token +

ST 383 834 834 834 B84 @@é B35 B34 354

Embeddings

[CLS] Cancel my flight [SEP] the hotel [SEP]
13T Eld  An example of the NSP loss calculation. \ }

|

Use Beam Search to
find most likely
sentence to follow.



Using BERT

Bert can be used for sequence labelling if all of the outputs are used:

argmax NNP

MD VB DT
Yi
Wk é:%:l

Z3

Bidirectional Transformer Encoder

Embedding
Layer

[CLS] Janet will back the bill

Sequence labeling for part-of-speech tagging with a bidirectional transformer encoder. The out-
put vector for each input token is passed to a simple k-way classifier.




BERT Punches Above Its Weight!

System MNLI-(m/mm) QQP  QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 823 56.0 151
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Model Size (in billions of parameters)

1000

i
o
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=
o

[

0.1

Megatron-LM (8.3B)

ELMo (94M)

GPT-3 (1758)

GPT-2 (1.58)

BERT-Large (340M)

2020

T5 (118)

Megatron-Turing NLG (530B)

Turing-NLG (17.2B)

2021

2022



