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Lecture Plan

o Sampling in Generative Models (esp. HW 05)

o Transformer Architecture Continued

• Encoder Review

• Decoder Architecture

• Transfer Learning

• BERT and friends….



Some Strategies for Sampling in Generative Models

In Generative Models, “Sampling” refers to the the choice of the next token using 
the probability distribution output by the network. 

Let’s look at a really simple example:

Suppose the generative model is creating sentences from the vocabulary

      V = [  '<s>’,  '</s>’,  'NLP’,  'early’,  'fun’,  'green’,  'hard’,  'interesting’,  ‘is’  ]

We have generated three tokens so far:

            [  '<s>’,  'NLP’,  ‘is’  ]

and the softmax output (probability 
distribution) for the next token is:

Token                      Probability



Some Strategies for Sampling in Generative Models

There are five common strategies for sampling. 

            [  '<s>’,  'NLP’,  ‘is’ , ???  ]

1. Sampling using the unmodified distribution:

2.  Greedy Sampling: Just choose the single most probable:

Code for 
sample_choice(…)
is on web site. 



Some Refinements for Sampling in Generative Models

3.    Softmax with Temperature

Cold: Exaggerate 
differences

Hot: Minimize 
differences



Some Refinements for Sampling in Generative Models

4.   Top-K Sampling: From top K most probable, choose proportionally:

5.  Top-P: From top choices with sum of probability p,
           choose proportionally:

Normalize to a probability 
distribution (sum = 1.0)

Normalize to a probability 
distribution (sum = 1.0)

0.51
0.71
0.83
0.95
0.98
0.99
1.0

Sum



Some Refinements for Sampling in Generative Models

Code for sample_choice(…) is on web site. 



Transformer: Multi-Head Attention

The center of the design is the Attention mechanism, here Multi-Head Attention….

Layer Normalization

Linear Layers

Layer Normalization

Residual Connection

Residual Connection

Positional Encoding

Embedding Layer with 
512 dimensions

All the data paths shown 
are the width of a word 
embedding = 512, and 
each path is duplicated 
512 times, once for each 
word in the input 
sequence! 

The input sequence is 
512 vectors, each 512 
floats wide. 



The basic mechanism at work here is self-attention, where the input is processed to determine 
the dependencies between different words. 

Self-attention is implemented by a series of linear
transformations, scaled, and then softmaxed to produce 
the probability distribution which tells us how much each 
word depends on other words in the same sequence. 

Transformer: Multi-Head Attention

Self-Attention



Multi-Head Attention applies this self-attention mechanism as 8 (or more) 
self-attention Heads:

This allows the encoder to try to understand 8 different kinds of dependencies among 
the words in the input. 

Transformer: Multi-Head Attention

The original design applied 8 
self-attention heads to 
sequences of length 512. 

512 
words

8 Heads



Transformer: Encoder

Then, this encoder layer is stacked 6, 8, or more layers deep!



Transformer: Decoder

The Decoder stage has essentially the same features as the Encoder, except for a stage 
called Masked Multi-Head Attention. 
Apparently, the classic diagram (from the original paper) is a bit misleading, and there 
are additional connections between the encoder and decoder:

Softmax 
probabilities for 
each word in 
vocabulary for 
each position 
in output. 
 |V| * 512 (!!) 



Transformer: Decoder

The Decoder stage has essentially the same features as the Encoder, except for 
Multi-Headed Attention is masked to simulate left to right generation of output;
Each stage of Decoder takes the context vector (output of encoder) as an additional 
input:



Transfer Learning: Leveraging pre-trained models

A hugely important development in ML in the last decade is the development of 
transfer learning systems, consisting of two stages:

Pre-Training:  A (large) model is trained on a (large) corpus to produce generic 
outputs; 

Downstream:  A NN is added on top of the pre-trained model to build models 
for a different task (called a "downstream  task"). 



Transfer Learning: Leveraging pre-trained models

There are two flavors of transfer learning:

Feature-based: Use outputs of pre-trained 
model as "features" input to downstream
model; further training only occurs in
downstream model:

Fine-Tuning: Outputs of pre-trained model 
are inputs to downstream model, but BOTH 
models are trained; typically, changes to 
pre-trained model are minimal.  

Example: ELMO                                           Examples: GPT, BERT



Transfer Learning: Leveraging pre-trained models

This was first used in image processing (but is now used everywhere):



Transfer Learning for NLP:  GPT, ELMO, and BERT 

Pre-trained models are typically very large and trained for a long time on huge 
amounts of data (so they have a lot of knowledge you can leverage for your 
specific task. 

The most successful systems in NLP are

• GPT (Generative Pre-trained Transformer) 

• ELMO (Embeddings from Language Models)
• BERT (Bidirectional Encoder Representations 
     from Transformers)

These all 
• Are based on transformers, but use ONLY
    the encoder phase;
• Produce contextual embeddings;
• GPT is autoregressive (outputs feed back
                 into inputs) 



Transfer Learning for NLP: GPT, ELMO, and BERT 

The most significant difference in the models is how they process the input 
sequence:

GPT uses a simplified "causal" transformer model which only uses left-context:



Transfer Learning for NLP: GPT, ELMO, and BERT 

The most significant difference in the models is how they process the input 
sequence:

ELMO and BERT use a bidirectional transformer architecture:



BERT



BERT

§ Bert has two implementations:
§ Bert base: 
§ 12 layers;  12 attention heads per layer;
§ 768 hidden units; 110 M parameters

§ Bert large: 
§ 16 layers;  16 attention heads per layer;
§ 1024 hidden units; 340 M parameters



BERT added two significant ideas for training 
which allowed it to achieve SOTA performance 
on significant tasks:

Training using a Masked Language Model (MLM); and

Focus on a "next sentence prediction" task with two sentences as input.

Note: The first versions of BERT used the 800 M word BooksCorpus and a 2.5 B 
word English Wikipedia corpus.  



The Masked Language Model is based on an educational theory/testing paradigm
known as the Cloze Task, where students learn a language by filling in blanks in a 
story or piece of text:



Masked Language Modeling uses unannotated text from a large corpus. 15% of 
the words in the corpus are selected for the training phase: of these, 

80% of replaced with the token [MASK]
10% are replaced with randomly-selected tokens
10% are left unchanged.

The model is trained to 
predict the missing tokens. 

Training BERT



A variation of MLM uses spans (subsequences of the input sequence); all of the 
words in the span are replaced as before:

Training BERT



The Next Sentence Prediction task is to input TWO sentences starting with the 
token [CLS] and separated by the token [SEP].   The training set has 50% 
sentences that are next to each other in the corpus, and 50% random sentences. 

Training BERT



Bert can be used for sentence classification if a single sentence is input:

Using BERT



BERT can classify the relationship between two sentences:

Training BERT



BERT can generate the most likely sentence to follow a given sentence:

Training BERT

Use Beam Search to 
find most likely 
sentence to follow.



Bert can be used for sequence labelling if all of the outputs are used:

Using BERT



BERT Punches Above Its Weight!


